
582 Technical Notes 

THE VERTICAL CYLINDER WITH 
HORIZONTAL TOP SURFACE 

the disc. This effect is presented graphically in Fig. 2, the 
abscissa of which reveals a new dimenrionkss orom that CR” ~~. _.~ ..--..._...__- n_ _-r . .._. _.... 

Equation (25) describes also the H-averaged heat transfer be written alternatively as (n/H)H; I;12 

coefficient on the vertical surface of the cylinder shown on 
the right-hand side of Fig. 2. What changes in the present 
case is only the expression for parameter B, which follows 
from the condition of mass continuity over the circular edge ‘. 
of the top surface 

(28) *. 

3. 
After using equations (l9), (20), (23) and (24), we obtain 

L) 4/s 
B = 0.259 - 

0 
H”“. 

H H 

This B expression is similar to the one for the vertical 
face of a slab with a flat top, equation (27). Again, the effect 

5, 

of the flow rate of condensate produced by the disc-shaped 
top surface is to decrease the condensation rate that would 

6, 

have been produced by the vertical surface in the absence of 
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1. INTRODUCTION 

MIXED convection problems involving Iaminar boundary 
layers have been treated in a variety of ways. Most solutions 
found thus far have been valid only over a limited range 
of the buoyancy parameters, i.e. they represent situations 
perturbed from either the pure forced or natural convection 
cases. Two sets of solutions must be obtained in order to 
have valid results for the entire range. Some of the early 
studies on mixed convection have dealt only with similarity 
solutions. For example, Sparrow et al. [l] pointed out that for 
an isothermal wedge, a similarity solution only existed for 
a wedge angle of 120”. Mixed convection for the vertical and 
the horizontal plate have also been discussed by Schneider 
[2], Lloyd and Sparrow [3], Sparrow and Minkowycz [4], 
Chen et al. [5], Ramachandran et al. [6] and Raju et al. [7]. 
For the horizontal plate, the momentum equation in the 
direction normal to the plate must be accounted for in order 
to obtain meaningful results. The integral of the temperature 
function adds complexity to the numerical solution when 
this momentum equation is included. Solution techniques 
have been mostly local similarity or local non-similarity in 
nature. Wedge flow was analyzed by Gunness and Gebhart 
[8]. They perturbed the Falkner-Skan equation for a situ- 
ation including the buoyancy effects in directions both along 
and normal to the surface. Their perturbation quantities, 
however, were related to the buoyancy parameter which 
limited the results to relatively small effects. Mixed con- 
vective flow for inclined plate and sphere geometries were 
investigated by Mucoglu and Chen [9, lo]. -Both local non- 
similarity [I I, 121 and Keller and Cebeci’s [13] finite-differ- 
ence algorithm were used to solve the laminar boundary 

layer equations which represented the system perturbed from 
forced and/or free convection. A good reference which sum- 
marizes the literature for mixed convection is the new text of 
Gebhart et al. [14]. 

In the present study, an analysis is made for mixed convection 
in laminar boundary layer flow over two-dimensional or 
axisymmetric isothermal surfaces with arbitrary contour. 
The laminar boundary layer equations for mixed convection 
are transformed and formulated in such a way that they are 
valid over the entire range of concern, from pure forced 
convection to pure natural convection. The MerkkChao 
series [15, 161 for two parameters is developed in this paper 
and is applied to obtain the solution for mixed convection. 
By introducing this two-parameter MerkkChao series into 
the transformed boundary layer equations, there results a 
set of ordinary differential equations with two parameters 
which implicitly absorb the geometry and orientation of the 
surface. Therefore, by assigning numerical values to these 
parameters, this set of equations can be solved so that the 
results for the flow field and the heat transfer can be expressed 
in terms of universal functions. 

The purpose of this study was (i) to obtain a set of trans- 
formations which would allow the boundary layer equations 
to be solved for the entire mixed convection range, (ii) to 
adapt the Merk-Chao expansion to these mixed convection 
equations, and (iii) to formulate modified definitions for the 
friction factor group and the Nusselt number group which 
are finite for the full mixed convection range. Section 2 of 
this paper illustrates the development of the transforms plus 
it presents the expansion used. A comparison of the solutions 
to the resultant equations with previous investigations is 
covered in Section 3. Finally, the modified definitions for 
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NOMENCLATURE 

Cf local friction factor u mixed pseudo-velocity function, a function of 
f(& II) dimensionless stream function both forced and natural convection 
Gr, Grashof number LJ, reference velocity used in defining the Reynolds 

9X x-component of gravitational force number and friction factor 
k thermal conductivity X coordinate measured along surface 
h convective heat transfer coefficient Y coordinate measured normal to surface 

N% local Nusselt number, hz/k z reference length. 
Pr Prandtl number 
r for axisymmetric flow, this is the normal Greek symbols 

distance from the axis of symmetry to the 
body surface iJ 

thermal diffusivity 
coefficient of thermal expansion 

R radius of sphere or cylinder Y angle of inclination for the inclined plate to the 
RX convection ratio defined for infinite vertical 

geometries pseudo-similarity variable 
RR convection ratio defined for finite geometries ; dimensionless temperature, 
Re, Reynolds number generalized for mixed flow, (T-T&V,- T,) 

U,r/v Aa, A, mixed convection boundary layer 
T fluid temperature in the boundary layer parameters, analogous to the wedge parameter 
T, temperature in the free stream for forced convection boundary layers 
T* temperature at the surface n shear viscosity 
n, a velocity components in x- and y-directions, Y kinematic viscosity, p/p 

respectively 5 dimensionless distance along the surface 
n, velocity in the free stream P fluid density 
u, velocity at the outer edge of the boundary layer, rW shear stress at surface 

due to pressure forces (P angular position on sphere or cylinder 
% pseudo-velocity due to body forces Y stream function. 

the dimensionless groups are presented and discussed in energy 
Section 4. 

2. MATHEMATICAL FORMULATION 

Consideration is given to the steady, laminar, mixed con- 
vective boundary layer flow over two-dimensional or axisym- 
metric bodies of uniform surface temperature, T,, situated 
in a flow field with a free stream temperature of T,. The 
coordinate x is the distance measured along the surface from 
the lower stagnation point, and y is the distance along the 
outer normal to the body. The corresponding velocity com- 
ponents are u and u. For rotationally symmetric bodies, r(x) 
is the radial distance measured from the axis of symmetry to 
the surface of the body. Constant fluid properties are 
assumed, except for the density in the buoyancy term. Fur- 
thermore, the viscous dissipation term and the buoyancy 
force in the y-direction are neglected. It is recognized that 
the current results will not be applicable to the horizontal 
plate problem or for geometries where the y-buoyancy force 
is comparable in magnitude to the x-buoyancy force. Note 
however that the purpose of this study is to illustrate the 
development of a double series expansion for obtaining the 
solution to mixed convection problems. The application of 
this technique is identical whether or not Y-buoyancy terms 
are accounted for. A more in-depth discussion concerned 
with including the Y-buoyancy terms can be found in ref. 
1171. 

The governing boundary layer equations for mixed flow 
are : 

continuity 

(1) 

(2) 

aT dT a2T 
uz+v, = av; 

with the boundary conditions 

u=v=O; T=T w at Y=O (4) 

n+%(x); T-+T, at Y-co (5) 

u = u,(O) ; T = T, at x = 0 for all Y. (6) 

In the above, r = 1 for two-dimensional flow. The velocity 
u,(x) is the flow velocity along the outer edge of the boundary 
layer which is assumed to be known either from inviscid flow 
theory or from experimental measurement. The continuity 
equation is identically satisfied by introducing a stream-func- 
tion. The entrance condition (6) is valid only for aiding flow 
and only aiding flow will be investigated in this paper. 

A pseudo-velocity function U(x) is defined by the equation 

dU du, du, du, 
u- = K- +g,b(T,-T,) = u,- +u,-_. dx dx dx dx (7) 

This form is proposed from the physical consideration that 
the sum of the driving forces per unit mass due to the 
streamwise pressure gradient and buoyancy are equated 
to a pseudo-inertia force. By integrating equation (7), 
there results 

u = J(u2 + u3. (8) 

The replacement of the buoyancy force by a pseudo-velocity 
function, u,, was first proposed by Lin and Chao [18] in their 
analysis of pure natural convection. The pseudo-velocity U 
strictly depends upon the geometry and orientation of the 
surface. An alternative form of U which has also been con- 
sidered is a linear combination of u, and u,. Solutions using 
other forms for the pseudo-velocity were obtained [17], but 
only the case using equation (8) will be reported in this paper. 

To solve the momentum and energy equations, the fol- 
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lowing coordinate transformations are introduced : 

Ur 
Y=-rl’@jiFY 

* = (2C) “XT, rl) ; 0 = g+ 
w m 

(9) 

(10) 

(11) 

These transformations, although not identical to those used 
by Raju et al. [7], perform the same function by allowing the 
resultant equations to be solved for the full mixed convection 
range. In the following, the primes denote differentiation 
with respect to n. The transformed equations become : 

momentum equation 

f’“+fS”+A,{A;-(f’)‘+(l-A;)e} 

= 25 aCf,f’) 
a(tt +2td3w (12) 

with the boundary conditions 

f(r.4 = 0) =f’(Lrl= 0) = 0; f’(Ln- ~0) = AB (13) 

where 

A, =;, A, =25& 
e d 

energy equation 

a(f, 0) e’+PrftY=Pr2tm 

with the boundary conditions 

f?(& n = 0) = 1 ; l9(& fj -+ co) = 0. (16) 
For the equation sets representing either pure forced flow 

or pure natural convection, there is only one parameter in 
the momentum equation. The Merk-Chao series can then be 
expressed in terms of a single perturbation quantity. 
However, for mixed convection there are two independent 
parameters, A9 and As. Consequently, the coordinate < must 
be expressed as a function of both parameters in the model, 
and a dual perturbation series results. f(& n) is expanded in 
the following series form as : 

with the variable f =f(<, q) and J =f;(A,, Aa, n). 
A similar expansion is used for the dimensionless tem- 

perature function, 0. These expansions are substituted into 
equations (12) and (15) and terms containing similar per- 
turbation quantities are collected. Only the first set of equa- 
tions is shown here, but five sets were used in obtaining the 
solutions 

f6’+fo~+AI{(A~-dfb)‘)+(l -A;,&) = 0 (18) 

eg + Pr ,fOeg = 0 (19) 

with the boundary conditions 

fo(5,O) =A(& 0) = 0; MT, ~0) = A, 

645,o) = 1 ; tdt, co) = 0. (20) 
The set of simultaneous differential equations for the f;‘s 

and 0,‘s were integrated using a fourth-order Runge-Kutta 

procedure on a VAX 1 I i780 computer. Details of the pro- 
cedure can be found in ref. [17]. Computations were made 
for A3 ranging from 0.0 to 1.5 and Aa ranging from 0.0 to 
1.0 for Prandtl numbers of 0.7 and 7.0. These solutions are 
for universal functions and can be applied to calculating the 
flow and heat transfer over any arbitrary geometry. The case 
of Aa = I corresponds to pure forced convection and, as 
such, can be compared to the results of Chao and Fagbenle 
[16]. For the first-order equations, the results match for the 
first four significant figures. Higher order functions (.1;, 0,) 
occasionally differ by as much as IO%, but over most of the 
range for At the difference is 1% or less. For a series which 
converges rapidly, the higher order terms are much smaller 
than the first-order term and have little effect on the overall 
solution. For pure natural convection (A, = 0), the degree 
of match for the first-order functions (fO, fl,,) is within 1% 
for Pr = 0.7 when compared to Lin and Chao [18]. Higher 
order solutions could not be compared individually because 
of a slight difference in the forms of the Merk Chao expan- 
sions used. 

Once the numerical values for f :‘(& q = 0) and O:(r, n = 0) 
are available, the calculations of the local surface shear stress 
and heat transfer become a simple matter. With U, as the 
reference velocity and z the reference length, the Reynolds 
number, the local friction factor and the local Nusselt num- 
ber are defined by 

Thus 

and 

Nu, Re; ‘!’ = -[~11;2[~]“2[~]‘i2H(j,~=O) 

(23) 

where 

(24) 

3. CALCULATIONS FOR SPECIFIC 
GEOMETRIES 

This section presents the results of the solution to the 
equations as applied to several geometries. It will be shown 
that the solutions to the modified Merk-Chao series do 
indeed converge fairly rapidly and accurately. In order to 
compare these results with those in the literature, it is necess- 
ary to use the definitions defined in the specific literature for 
the friction factor group and the Nusselt number group. The 
situation analyzed first is the inclined plate. The simple forms 
for the forced convection velocity, u,(x) = u,, and the free 
convection pseudo-velocity, U=(X) = [2gJ(Tw- T,)x] I”, 
make it relatively easy to compute the analytical rep- 
resentations of the parameters and their derivatives needed 
for the modified Merk-Chao series expansion. They are 

thus 

I 
Aa = (1 +a2)I’2 and 0 G A, < 1 

2t2 = - ; Aa(l-A;); 
0 
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2 dZA3 23 
(25) -p = - j 18hi(l -Ai)‘; 

0 

OS = 
3(1 +AB) 

2(1+A,+h;)’ 

The x-component of gravitation is gX = g cos (y), where y 
represents the angle between the plate and the vertical. Con- 
ventional definitions for the friction factor group and the 
Nusselt number group were used with the reference length z 
being distance, x, along the surface from the stagnation point 
and the reference velocity being the free stream velocity, u,. 

Table 1 shows both the convergence of the MerkChao 
series and also compares our results with those of Mucoglu 
and Chen [9]. It is felt that by terminating the series at five 
terms, adequate convergence is demonstrated. The solutions 
were combined as if consisting of three groups-the local 
similarity solution, a first-order correction (the sum of the 
terms multiplied by 25 d&/de and 25 dA,/dt), and a second- 
order correction (the sum of the two higher order terms). 
The percentage difference columns in Tables 1 and 2 are 
based on the solution with five terms in the modified Merk- 
Chao expansion. Except for small values of the buoyancy 
parameter, the results differ by less than 1%. For the local 
Nusselt number, Table 2, the five-term result seems to be 
off by a fixed percentage over most of the range. Both the 
solutions to the Ct;, 0,) equations and the coefficients in the 
MerkkChao series appear to decrease for the higher order 
terms. The series converges very rapidly. 

For the horizontal cylinder the forced convection velocity 
and free convection pseudo-velocity are expressed as 

u, = 2u, sin 4 where 4 = x/R 

u, = [2gB(Tw-T,)R(l-c0s+)]“~. (26) 

The Nusselt number group reported in Sparrow and Lee [19] 

should be multiplied by the square root of 2 in order to 
compare with our definition. Numerical results matched very 
well for the entire range of the buoyancy parameter for 
,#J = 0”. For flow around a sphere, the form for the natural 
convection pseudo-velocity is identical to that for the hori- 
zontal cylinder and the forced convection velocity 
expression, a,, differs only in that the constant factor is 1.5 
vs 2.0. The variable r is given by 

r(x) = R sin (x/R) = R sin 4 (27) 

where R is the radius of the sphere. As with the horizontal 
cylinder computations, numerical methods were used to get 
values for the parameters and the derivatives needed for the 
modified MerkChao expansion. The convergence again is 
very good. The solutions based on one, three and five terms 
of the series are indistinguishable up to angular positions of 
70” or more. The results of Chen and Mucoglu [lo] are 
presented graphically in ref. [17] and all data read from their 
figures fell on our curves. 

4. PROPOSED DIMENSIONLESS GROUPS 
FOR MIXED CONVECTION 

When using conventional definitions, it is apparent that 
the local friction factor and Nusselt number get infinitely 
large as the buoyancy factor, Gr,/Re:, approaches infinity. 
These definitions of the local friction factor group and 
Nusselt number group are more useful for cases slightly per- 
turbed from forced convection. If the entire range of mixed 
convection is to be examined, more comprehensive defi- 
nitions are desired for these dimensionless groups which are 
finite for the whole range of mixed convection. These newly 
defined dimensionless groups should also reduce in the limits 
to those currently used for pure forced and natural 
convection. 

Infinite geometries such as the inclined plate are handled 
slightly different from finite geometries such as the sphere. 
For infinite bodies, the reference velocity, I/,, recommended 
is equivalent to the pseudo-velocity Ii (= [at + u:] I’*), Pos- 
ition along the surface of the body is taken as the reference 
length. It is instructive to compare numerically the modified 

Table 1. Comparison using the conventional friction factor group showing convergence 
of the Merk-Chao series for an inclined plate ( U2 = u: + u:, Pr = 0.7, uniform surface 

temperature) 

Percentage 
Mucoglu and Chen [9] Current study-C, Re:” difference 

Gr,lRe: f”(O) C, ReJt2 one term three terms five terms (%) 

0.0 0.332 0.664 0.664 0.664 0.664 0.0 
1.0 1.203 2.406 2.549 2.474 2.462 -2.33 
2.0 1.860 3.720 3.827 3.771 3.765 -1.24 
3.0 2.439 4.878 4.951 4.908 4.908 -0.61 
4.0 2.971 5.942 5.988 5.953 5.956 -0.23 
5.0 3.470 6.940 6.963 6.935 6.941 -0.01 

Table 2. Comparison of the conventional Nusselt number group for an inclined plate between 
the current study and the literature (U’ = u,‘+ u,‘, uniform surface temperature) 

Pr = 0.7 Pr = 7.0 
Mucoglu and Current 

Gr,/Re: 
Percentage Mucoglu and Current 

Chen [9] 
Percentage 

study difference (%) Chen [9] study difference (%) 

0.0 0.2927 0.2927 0.00 0.6459 0.6459 0.00 
1.0 0.4088 0.4102 -0.34 0.8612 0.8724 -1.30 
2.0 0.4641 0.4664 -0.50 0.9740 0.9852 -1.15 
3.0 0.5035 0.5064 -0.58 1.055 1.067 -1.13 
4.0 0.5348 0.5382 -0.64 1.121 1.133 -1.07 
5.0 0.5661 0.5649 -0.68 1.176 1.189 -1.10 
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0.6- 

0.41.0 
I 

0.8 0.6 0.4 0.2 0 
CONVECTION RATIO. R, 

FIG. 1. Effect of reference velocity definition on the local 
friction factor for an inclined plate. 

definition (U, E I/) with the conventional definition (equi- 
valent to letting UK = u,) for forced convection. This is done 
here using the geometry for an inclined plate. The expressions 
for the friction factor group and Nusselt number group 
become 

C,@’ = [&]‘:‘[;~‘~(&n = 0) (28) 

NW, Re;“2 = - [&]“2[fp(i>. = 01. 

(29) 

With this change in formulation, the data is presented as 
functions of the convection ratio R, in Fig. 1. The convection 
ratio is defined by 

R, =A which for an inclined plate = I+ s I 1 
-I 14 + u, x 

(30) 

This ratio is similar to the mixed flow pammeter used by 
Raju et al. [7]. The uppermost curve is based on the forced 
convection velocity as the reference velocity. The other line 
represents the modified friction factor group. As expected, 
the modified definition of the friction factor becomes equal 
to (2)“*f”(& 0) for pure forced convection, and equal to 
(3)lJ2,r(5, 0) for pure natural convection. This last value is 

i t 

I 

L .28 
Pr = 0.7 : 
ue=u:+u: I 

2.26 
r; 

1 

wn 
I 

2.24- 1 

< 

4.22- 

.2Ob 
1.0 04 0.2 

c%,,,,ai RAs10: Rx 
0 

FIG. 2. Effect of reference velocity definition on the local 
Nusselt number for an inclined plate. 

ANGULAR POSITION, ‘p 

FIG. 3. Friction factor group and Nusselt number group vs 
angular position-horizontal cylinder. 

identical to the limiting case for the situation perturbed from 
natural convection. Figure 2 illustrates the local Nusselt 
number group based on the new definition. These dimen- 
sionless groups are correlated by the following two equations 
in terms of the convection ratio R, for Pr = 0.7 : 

C, Re:‘2 = 1.1416-0.4775R,-0.3013R,(R,- 1) 

-2.414R,(R,Z- 1)+2.017R,(R:- 1) (31) 

and 

NM, Re;‘j2 = 0.2970-O.O043R,-0.4359R,(R,- 1) 

-0.1578R,(R:-1)+1.25lR,(R:-I). (32) 

For geometries involving finite bodies such as the hori- 
zontal cylinder or the sphere, where there is a convenient 
reference length such as the radius R, the convection ratio is 
defined such that it is not a function of position 

RX=--_ ‘, 

u, +&J/U* - L)Rj’ 
(33) 

To avoid the local dimensionless groups from being infinite 
at the stagnation point, the reference velocity U, is chosen 
to be 

Ui, = u.,+[g~(T,--T,)Rl”2. (34) 

For both the horizontal cylinder and sphere, the parameters 
and their derivatives were computed numerically. Plots of 
these quantities can be found elsewhere. Figure 3 shows 
the redefined friction factor and Nusselt number for the 
horizontal cylinder for Pr = 0.7 as functions of angular posi- 
tion, ~5, with the convection ratio, R,, as a fixed parameter. 
Table 3 lists some results on the convergence of the series. 
Shown are the ratios of the similarity solution (one term) 
and the sum of three terms to the five-term solution for 
various combinations of convection ratio and angular posi- 
tion 4. The closer the ratio is to 1.0, the better the conver- 
gence. For increasing angle and increasing forced convection 
contribution, the convergence worsens but is still very good 
except for large angles (4 3 90”) under conditions of forced 
flow dominating (AB z 1). Figure 4 depicts the redefined 
friction factor and Nusselt number for the sphere. 
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Table 3. Relative convergence of the modified Merk-Chao 
series expansion as applied to a horizontal cylinder (Pr = 0.7, 

u2 = uz +u:, 

4 (deg) & Co/Co GIG NuJNu, Nu,lNu, 

0 1.0 1 1 1 1 

45 1.0 0.9884 1.0005 1.006 0.999 

75 1.0 0.9207 1.0245 1.013 0.979 

90 1.0 0.646 1.363 0.9486 0.8950 

90 0.9 0.7250 1.271 0.9651 0.9029 
90 0.5 0.960 1 1.0073 1.0326 0.9845 

90 0.1 0.9817 1.0011 1.0030 0.9991 

5. CONCLUSIONS 

The technique for applying a MerkChao series expansion 
to boundary layer problems has been extended to mixed 
convection flow over two-dimensional and axisymmetric 
bodies. This technique involves a double perturbation expan- 
sion about a local similarity state. The resulting ordinary 
differential equations are then amenable to solution via a 
shooting method. The resulting universal functions are inde- 
pendent of geometry and can be tabulated with respect to 
the two mixed convection parameters. To insure that the 
solutions to the boundary layer equations would be valid for 
the whole range of the mixed flow region, appropriate 
coordinate transformations, which are functions of both 
forced and natural convection velocities, were first applied 
to the energy and momentum equations. The method was 
adapted to, but is not limited to, steady, laminar, incom- 
pressible flow over isothermal surfaces. 

In order to present the data over the entire convection 
range, a convection ratio, which was chosen to be the ratio of 
forced to the sum of forced plus natural convection reference 
velocities, was introduced. In addition, the definitions for the 
Reynolds number and friction factor were redefined based 

FIG. 4. Friction factor group and Nusselt number group vs 
angular position-sphere. 

upon choosing a suitable reference velocity. Several geo- 
metries were considered. For an inclined plate, the series can 
be shown to converge very rapidly. For both the sphere and 
horizontal cylinder, convergence was very good except for 
angular positions of 90” or more and forced flow dominating. 
Under this condition, more terms in the series may be 
required to obtain more accurate numerical results. 
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